If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=3Y^2-18Y-10
We move all terms to the left:
-(3Y^2-18Y-10)=0
We get rid of parentheses
-3Y^2+18Y+10=0
a = -3; b = 18; c = +10;
Δ = b2-4ac
Δ = 182-4·(-3)·10
Δ = 444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{444}=\sqrt{4*111}=\sqrt{4}*\sqrt{111}=2\sqrt{111}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{111}}{2*-3}=\frac{-18-2\sqrt{111}}{-6} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{111}}{2*-3}=\frac{-18+2\sqrt{111}}{-6} $
| x-14=3(x+) | | 3y-4/5=6 | | 3x=1/728 | | 0.004*x=10 | | 7a-4a+8-9a-2=6a-20-5a+16 | | 2+x-5=2x | | 6-2y=-8y+6y | | 77-16x^2=0 | | 5x+6x+8x=1000 | | X^3-14x^2-11x-72=0 | | y=8E-06 | | p^2-4p-14=-2 | | 3e/e=8/6 | | P-8=q | | 3e/e=18/8 | | 65x1.59x.72=74.412 | | y+15=2y-30 | | x-41=-21 | | 11.99(x)=4.11 | | 11.99x=4.11 | | 96x=10 | | -2(y-5)(-y+2)=0 | | -10-2x=-8+4x+10 | | 6-3x=-8+4x | | 6x-3-x=x-7 | | c/31=15 | | Y3/4/2y-1/3=-6/5 | | 3x-12=-87 | | 6y+6=4y+26 | | 5/11+x=13/22 | | 3t-2/4-2t+3/3=2/7-t | | 64*x=6000 |